Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae
نویسندگان
چکیده
BACKGROUND Efficiently utilizing all available carbon from lignocellulosic feedstock presents a major barrier to the production of economically feasible biofuel. Previously, to enable xylose utilization, we introduced a cofactor-dependent xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway, or a cofactor-independent xylose isomerase (XI) pathway, into Saccharomyces cerevisiae. The resulting strains metabolized xylose with high efficiency. However, in both pathway recombinant strains, the cofactor imbalance caused accumulation of the byproducts glycerol and/or xylitol and reduced the ethanol production efficiency. RESULTS In this study, we introduced NADH oxidase from Lactococcus lactis into both XI and XR-XDH pathway recombinant strains. To reduce byproduct accumulation while maintaining xylose metabolism, we optimized the expression level of NADH oxidase by comparing its expression under the control of different promoters and plasmids. In recombinant XI strains, NADH oxidase was expressed at different levels, regulated by the GPD2 promoter or TEF1 promoter in the 2 μ plasmid. The expression under the control of GPD2 promoter decreased glycerol production by 84% and increased the ethanol yield and specific growth rate by 8% and 12%, respectively. In contrast, in the recombinant XR-XDH strains, such expression level was not efficient enough to decrease the byproduct accumulation. Therefore, higher NADH oxidase expression levels were tested. In the strain expressing NADH oxidase under the control of the TEF1 promoter in the centromeric plasmids, xylitol and glycerol production were reduced by 60% and 83%, respectively, without significantly affecting xylose consumption. CONCLUSIONS By fine-tuning NADH oxidase expression, we decreased the glycerol or/and xylitol production in both recombinant XI and XR-XDH xylose-metabolizing yeast strains. The optimal NADH oxidase expression levels depend on metabolic pathways. Similar cofactor engineering strategies could maximize the production of other redox dependent metabolites.
منابع مشابه
Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities
BACKGROUND 2,3-Butanediol (2,3-BD) is a promising compound for various applications in chemical, cosmetic, and agricultural industries. Pyruvate decarboxylase (Pdc)-deficient Saccharomyces cerevisiae is an attractive host strain for producing 2,3-BD because a large amount of pyruvate could be shunted to 2,3-BD production instead of ethanol synthesis. However, 2,3-BD yield, productivity, and tit...
متن کاملMetabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae.
Low ethanol yields on xylose hamper economically viable ethanol production from hemicellulose-rich plant material with Saccharomyces cerevisiae. A major obstacle is the limited capacity of yeast for anaerobic reoxidation of NADH. Net reoxidation of NADH could potentially be achieved by channeling carbon fluxes through a recombinant phosphoketolase pathway. By heterologous expression of phosphot...
متن کاملIncreasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.
Respiratory metabolism plays an important role in energy production in the form of ATP in all aerobically growing cells. However, a limitation in respiratory capacity results in overflow metabolism, leading to the formation of byproducts, a phenomenon known as "overflow metabolism" or "the Crabtree effect." The yeast Saccharomyces cerevisiae has served as an important model organism for studyin...
متن کاملSHAM-sensitive alternative respiration in the xylose-metabolizing yeast Pichia stipitis.
SHAM-sensitive (STO) alternative respiration is present in the xylose-metabolizing, Crabtree-negative yeast, Pichia stipitis, but its pathway components and physiological roles during xylose metabolism are poorly understood. We cloned PsSTO1, which encodes the SHAM-sensitive terminal oxidase (PsSto1p), by genome walking from wild-type CBS 6054 and subsequently deleted PsSTO1 by targeted gene di...
متن کاملExploring xylose metabolism in Spathaspora species: XYL1.2 from Spathaspora passalidarum as the key for efficient anaerobic xylose fermentation in metabolic engineered Saccharomyces cerevisiae
BACKGROUND The production of ethanol and other fuels and chemicals from lignocellulosic materials is dependent of efficient xylose conversion. Xylose fermentation capacity in yeasts is usually linked to xylose reductase (XR) accepting NADH as cofactor. The XR from Scheffersomyces stipitis, which is able to use NADH as cofactor but still prefers NADPH, has been used to generate recombinant xylos...
متن کامل